When the Sum and the Product are One and the Same

One question that appears in brain teaser books is the following: find two integers a and b so that $a \cdot b = a + b$. There are two solutions to this problem: $a = b = 0$ or $a = b = 2$.

However, if we allow a, b to be rational numbers (i.e. fractions), then there is an infinite number of solutions to this equation. From the following we can see, with one exception, that for any rational number a , there exists a rational number b such that $a \cdot b = a + b$.

We suppose that a, b are rational numbers such that $a \cdot b = a + b$. Then we have the following:

$$
a \cdot b - b = a
$$

$$
b(a - 1) = a
$$

$$
b = \frac{a}{a - 1}
$$

So if $a \neq 1$, there exists a unique rational number b so that $a \cdot b = a + b$.

To show that b is unique, suppose there exists a rational number c so that $b \neq c$, $a \cdot b = a + b$, and $a \cdot c = a + c$. So $b = \frac{a}{a-1}$ and $c = \frac{a}{a-1}$, a contradiction.

We now show that the only integer solutions to this equation are $a = b = 0$ and $a = b = 2$. Suppose there is another integer solution to this equation, so a is an integer other than 0 or 2.

Suppose $a = 1$, then we have $a + 1 = a$, which is impossible. Now if $a > 0$, then $a > 2$. Since $a > 2$, $a = 1 \pmod{a-1}$. Since $a > 2$, this means that a is not divisible by $(a-1)$. Thus $\frac{a}{a-1}$ is not an integer.

If $a < 0$, then $a - 1 < 0$. So $0 < \frac{a}{a-1}$. Since $a < 0$, $|a| < |a - 1|$ and $\frac{a}{a-1} = \frac{|a|}{|a-1|}$ $\frac{|a|}{|a-1|}$ (as a and $(a-1)$ have the same sign). So $\frac{a}{a-1}$ < 1.

In either case, a contradiction occurs. So the only integer solutions to $a \cdot b =$ $a + b$ are $a = b = 0$ and $a = b = 2$.

Now we consider the problem of finding integers a, b, c so that $a \cdot b \cdot c = a+b+c$. There are an infinite number of solutions to this problem–we have a solution if we set a to be any integer, $b = -a$, and $c = 0$. However, if we add the restriction that none of a, b, c can be 0, then there are only two solutions to this problem: $(a, b, c) = (3, 2, 1)$ or $(-3, -2, -1)$.

To show that the above triplets are the only solutions to the problem $a \cdot b \cdot c =$ $a + b + c$. We first consider the case where a, b, c are rational numbers. For all rational numbers a, b , there exists a unique rational number c such that $a \cdot b \cdot c = a + b + c.$

Given rational numbers a, b , we can find c so that $a \cdot b \cdot c = a + b + c$, as shown below.

$$
a \cdot b \cdot c = a + b + c
$$

$$
a \cdot b \cdot c - c = a + b
$$

$$
c(a \cdot b - 1) = a + b
$$

$$
c = \frac{a + b}{a \cdot b - 1}
$$

So if $a \cdot b \neq 1$, there exists rational number c such that $a \cdot b \cdot c = a + b + c$. The proof of the uniqueness of c is as follows: given a, b , suppose there exists rational numbers c, d such that $c \neq d$, $a \cdot b \cdot c = a + b + c$ and $a \cdot b \cdot d = a + b + d$. Then $c = \frac{a+b}{a\cdot b-1}$ and $d = \frac{a+b}{a\cdot b-1}$. Thus $c = d$ $(a, b$ are fixed), a contradiction.

We now prove that when none of a, b, c is 0, the only integer solutions to the equation $a \cdot b \cdot c = a + b + c$ are $(a, b, c) = (3,2,1)$ or $(-3,-2,-1)$.

From above, if $c = \frac{a+b}{a\cdot b-1}$, then the triple (a, b, c) is a solution to $a \cdot b \cdot c =$ $a + b + c$. So if $(a + b)$ is divsibile by $a \cdot b - 1$, integers a, b, c form a solution to $a \cdot b \cdot c = a + b + c.$

We first prove a couple of statements.

- 1. If a, b, c is a solution to the equation $a \cdot b \cdot c = a+b+c$, then so is $-a, -b, -c$.
- 2. If non-zero integers a, b, c form a solution to the equation $a \cdot b \cdot c = a+b+c$, then a, b, c have the same sign.

The proofs are as follows:

1.

$$
(-a) \cdot (-b) \cdot (-c) = -(a \cdot b \cdot c)
$$

= -(a+b+c)
= (-a) + (-b) + (-c) \quad \Box

2. Suppose there exist non-zero integers a, b, c such that $a \cdot b \cdot c = a + b + c$ and not all of them have the same sign.

If a, b are both positive, $a + b$ is also positive. Now a, b cannot both be equal to 1 (since $a \cdot b \neq 1$). So $a \cdot b > 1$. Therefore $(a \cdot b - 1)$ is positive and thus c is positive. Similarly, if a, b are both negative, then so is c .

So exactly one of a, b is positive and the other is negative. Also, $|a| \neq |b|$ as otherwise we would have $a + b = 0$ and $c = \frac{0}{a \cdot b - 1} = 0$, which violates the non-zero requirement. Without loss of generality, assume $|a| > |b|$ (otherwise switch the signs of a and b).

We consider the number

$$
|c| = |\frac{a+b}{a \cdot b - 1}| = \frac{|a+b|}{|a \cdot b - 1|}.
$$

As a is positive and b is negative, $|a + b| = |a| - |b| < |a|$. Since $a + b \neq 0$, $|a + b| > 0.$

Since a and b have opposite signs, $a \cdot b$ is negative. As $a \cdot b < 0$, $|a \cdot b - 1| >$ $|a \cdot b| = |a| \cdot |b| \ge |a|$ (since $|b| \ge 1$).

So $0 < |a+b| < |a| < |a \cdot b - 1|$. Thus $|c| = \frac{|a+b|}{|a \cdot b - 1|} < 1$ and $|c| > 0$. So $-1 < c < 1$ and $c \neq 0$, therefore c is not an integer, a contradiction.

Thus a, b, c have the same sign.

 \Box

So we now only need to consider a, b, c where they are all positive. If $a = b$, then $c = \frac{2 \cdot a}{a^2 - 1}$. Thus $2 \cdot a \ge a^2 - 1$. So we have $0 \ge a^2 - 2 \cdot a - 1$.

By the quadratic formula, the solutions to the equation $0 = a^2 - 2 \cdot a - 1$ are By the quadratic formula, the solutions to the equation $0 = a^2 - 2 \cdot a - 1$ are
 $1 \pm \sqrt{2}$. Since we have $0 \ge a^2 - 2 \cdot a - 1 = (a - 1 + \sqrt{2})(a - 1 - \sqrt{2})$, exactly $1 \pm \sqrt{2}$. Since we have $0 \ge a^2 - 2 \cdot a - 1 = (a - 1 + \sqrt{2})(a - 1 - \sqrt{2})$, exactly
one of $(a - 1 + \sqrt{2})$ and $(a - 1 - \sqrt{2})$ is non-positive. So $1 + \sqrt{2} \ge a \ge 1 - \sqrt{2}$. Since a is an integer and $\sqrt{2}$ is not, $a = 0, 1, or 2$.

a is positive, so $a \neq 0$. If $a = 1$, then $c = 2 \cdot a/(a^2 - 1) = 2/0$, which is impossible. This leaves $a = 2$. However, this means that $c = 4/3$, which is not an integer. Thus the equation $a \cdot b \cdot c = a + b + c$ has no solution when $a = b$.

If $a \neq b$, then we can assume, without loss of generality, that $a > b$.

First we consider the case where $b = 1$. Then we have

$$
c = \frac{a+1}{a-1} = 1 + \frac{2}{a-1}.
$$

Since c is an integer, $(a - 1) = 1$ or 2. So $a = 2$ or 3. If $a = 2, c = 3$; if $a = 3, c = 2$. (If $a > 3$, then $0 < \frac{2}{a-1} < 1$. Thus c is not an integer for $a > 3$.)

Now we consider b where $b \geq 2$. We have $a + b < 2 \cdot a$ (since $a > b$). So $a + b \leq 2 \cdot a - 1$. Since $b \geq 2$, $a \cdot b - 1 \geq 2 \cdot a - 1$. Thus $a \cdot b - 1 \geq a + b$. We also need $a + b$ to be divisible by $a \cdot b - 1$, so $a + b \ge a \cdot b - 1$ (as $a + b > 0$). So $a + b = a \cdot b - 1 = 2 \cdot a - 1.$

Since $a \cdot b - 1 = 2 \cdot a - 1$ and $a \neq 0$, $b = 2$. Since $a + b = 2 \cdot a - 1$, $b = a - 1$. So $a = 3$ and $c = 1$.

In all cases, we have a permutation of $(3,2,1)$. So the only possible triples (a, b, c) where a, b, c are all non-zero and satisfy $a \cdot b \cdot c = a + b + c$ are $(3,2,1)$ and $(-3,-2,-1)$ (by statement 1).

In fact, for any integer $n \geq 2$, there is an integer solution to the equation

$$
a_1 + a_2 + \cdots + a_n = a_1 \cdot a_2 \cdot \ldots \cdot a_n
$$

such that a_1, a_2, \cdots, a_n are all non-zero — take $a_1 = n, a_2 = 2$, and $a_i = 1$ for $i=3,4,\cdots,n$.